Functional Dependency
If R is a relation with attributes X and Y, a functional dependency between the attributes is represented as X->Y, which specifies Y is functionally dependent on X. Here X is a determinant set and Y is a dependent attribute. Each value of X is associated with precisely one Y value.
Closure of set of functional dependency
Closure of set of functional dependencies F is set of all FDs that include F as well as all dependencies that can be inferred from F.
Denoted as – F+
Inference rule
Armstrong’s axioms are a set of inference rules used to infer all the functional dependencies on a relational database.
Axiom of reflexivity
This axiom says, if Y is a subset of X, then X determines Y
[image: Ch-11-Axion-Reflexivity]
Axiom of augmentation
The axiom of augmentation, also known as a partial dependency, says if X determines Y, then XZ determines YZ for any Z
[image: Ch-11-Axiom-of-Augmentation-300x34]
Axiom of transitivity
The axiom of transitivity says if X determines Y, and Y determines Z, then X must also determine Z
[image: Ch-11-Axiom-of-transitivity-300x30]
Union
This rule suggests that if two tables are separate, and the PK is the same, you may want to consider putting them together. It states that if X determines Y and X determines Z then X must also determine Y and Z
[image: Ch-11-Axiom-Union-300x23]
For example, if:
· SIN —> EmpName
· SIN —> SpouseName
You may want to join these two tables into one as follows:
SIN –> EmpName, SpouseName
Decomposition
Decomposition is the reverse of the Union rule. If you have a table that appears to contain two entities that are determined by the same PK, consider breaking them up into two tables. This rule states that if X determines Y and Z, then X determines Y and X determines Z separately
[image: Ch-11-Axiom-Decomposition-300x28]
Dependency Diagram
A dependency diagram, shown in Figure 11.6, illustrates the various dependencies that might exist in a non-normalized table. A non-normalized table is one that has data redundancy in it.
[image: Ch-11-Dependency-Diagram-300x67]
The following dependencies are identified in this table:
· ProjectNo and EmpNo, combined, are the PK.
· Partial Dependencies:
· ProjectNo —> ProjName
· EmpNo —> EmpName, DeptNo,

· ProjectNo, EmpNo —> HrsWork
· Transitive Dependency:
· DeptNo —> DeptName
Closure of attributes[X-closure]
Closure of attributes(x+) is set of attributes which can be determined using X.
Given a set of attributes of R and a set of functional dependencies F, we need a way to find all of the attributes of R that are functionally determined by . This set of attributes is called the closure of under F and is denoted +. Finding + is useful because:
· if + = R, then is a superkey for R
· if we find + for all R, we've computed F+ (except that we'd need to use decomposition to get all of it).
Problem:
Compute the closure for relational schema
R={A,B,C,D,E}
A-->BC
CD-->E
B-->D
E-->A
List candidate keys of R.
Solution:
R={A,B,C,D,E}
F, the set of functional dependencies A-->BC, CD-->E, B-->D, E-->A
Compute the closure for each in in F
Closure for A
	Iteration
	Result
	using

	1
	A
	

	2
	ABC
	A-->BC

	3
	ABCD
	B-->D

	4
	ABCDE
	CD-->E

	5
	ABCDE
	

A+ = ABCDE, Hence A is a super key
Closure for CD
	Iteration
	Result
	using

	1
	CD
	

	2
	CDE
	CD-->E

	3
	ACDE
	E-->A

	4
	ABCDE
	A-->BC

	5
	ABCDE
	

CD+ = ABCDE, Hence CD is a super key
Closure for B
	Iteration
	result
	Using

	1
	B
	

	2
	BD
	B-->D

	3
	BD
	

B+ = BD, Hence B is NOT a super key
Try applying Armstrong axioms, to find alternate keys.
B-->D
BC-->CD (by Armstrong’s augmentation rule)
Closure for BC
	Iteration
	result
	using

	1
	BC
	

	2
	BCD
	BC-->CD

	3
	BCDE
	CD-->E

	4
	ABCDE
	E-->A

BC+ = ABCDE, , Hence BC is a super key
Closure for E
	Iteration
	result
	using

	1
	E
	

	2
	AE
	E-->A

	3
	ABCE
	A-->BC

	4
	ABCDE
	B-->D

	5
	ABCDE
	

E+ = ABCDE
A and E are minimal super keys.
To see whether CD is a minimal super key, check whether its subsets are super keys.
C+ = C
D+ = D
Since C and D are not super keys, CD is a minimal super key.
To see whether BC is a minimal super key, check whether its subsets are super keys.
B+ = BD
C+ = C
Since B and C are not super keys, BC is a minimal super key.
Since A, BC, CD, E are minimal super keys, they are the candidate keys.A, BC, CD, E

If there are 5 attributes, then we need to check 32 (25) combinations to find all super keys. Since we are interested only in the candidate keys, the best bet is to check closure of attributes in the left hand side of functional dependencies.
If the closure yields the relation R, it is super key. Check whether it is a minimal super key, by checking closure for its subsets.
If the closure didn’t yield the relation R, it is not a super key. Try applying Armstrong’s axioms, to get an attribute combination that is a super key. Check to see it also an minimal super key.

The list of minimal super keys obtained is the candidate keys for that relation.

A superkey is a set of one or more attributes that allow entities (or relationships) to be uniquely identified.
Examples for the given problem:
A,CD, E, BC, AE, AB, ABE,ACD,BCD, DE etc.
(Any attribute added with the minimal super keys A, CD, E is also a super key).
A candidate key is a superkey that has no superkeys as proper subsets. A candidate key is a minimal superkey.
Examples for the given problem:
A, BC, CD, E
The primary key is the (one) candidate key chosen (by the database designer or database administrator) as the primary means of uniquely identifying entities (or relationships).
Example for the given problem:
Any one of the above three (A, BC, CD, E) chosen by the database designer.

[image:]
[image:]
[image:]
[image:]
[image:]
image6.jpeg

image7.jpeg
Canonical Cover

Whenever a user updates the Gatabase, the system must check wnether any of the functional dependencies are getting
violated in this process. If there is a violation of dependencies in the new database state, the system must roll back. Working
with huge set of funciional dependencies can cause unnecessary added computational time. This is where the canonical
cover comes into play.

Acanonical cover of a set of functional dependencies F is a simpified set of functional dependencies that has the same closure
asthe original set F.

Important definitions:

Extraneous airbutes: An afiiute of @ funcional dependency is Said o be exiancous if e can remove f winout changing
the closure of th set offunconal dependences.

Canonical covers A canorical cover ' f a set of functonal dependences ¥ such that ALL he folowing propertes are
satistied

« F logically implies all dependencies in F.

Flogically impiies all dependencies n ¥

= No functional dependency in 7, contains an extraneous attrbute.

- Each left side of a functional dependency in % is unique. That is, there are no two dependencies vy — /31 and
= Bomsucnthata] — vy

image8.jpeg
Finding Canonical Cover

Algorithm to compute canonical cover of set F:

repeat
1. Use the union rule %o replace any dependancias in

ay = Brmacy = Boumag — 5152
2. Find 2 functional dependency OF — (3 with an

extransous setribute sither in (U or in

3. 36 an excranesus aterdbute S found, celete it from O — 3.
o s

Examplet:

Consider tne following set F of functional dependencies

image9.jpeg
Steps to find canonical cover.

1. There are two functional dependencies with the same set of attibutes on the left
A—>BC
A—B

These two can be combined o get
A= BC.

Now, the revised set F becomes:
F={

A—>BC

BC

B—C

}

2 There is an extraneous attribute in AB —> C because even after removing AB — C from the set F, we get the same
closures. This is because B — C is already a part of .
Now, the revised set F becomes
P
A—»BC
B—C
}

3. Cis an extraneous attribute in A —> BC, also A — B is logically implied by A —> B and B —> C (by transitivity).
P
A—B
B—C
}

image10.jpeg
4. After tis step, F does not change anymore. So,
Hence the required canonicalcover i,
Fest
A—B
B—C

i

Example2:

Consider another set F of functional dependencies:

A—+BC
cD—E
B—D
E—A

image11.jpeg
1. The left side of each functional dependency in F is unique.

2 None of the atiributes in the left or right side of any functional dependency is extraneous (Checked by applying definition
of extraneous affrioutes on every functional dependency).

3. Hence, the canonical cover [is equal to F.

ks it o e s camonieat over Lo S Sat o R0 Hepnoaness,

image1.jpeg
Ify g X,then)(—-Y

image2.jpeg
X — Y,thenXZ — Y Zforany Z

image3.jpeg
X — YandY — Z,then X — Z

image4.jpeg
X -Yand X — Zthen X - YZ

image5.jpeg
ifX = YZthenX — Yand X — Z

